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PROBLEM DEFINITION

The problem is to find a global minimum for the Problem P. Necessary and
sufficient conditions are available for local optimality. However, global solution can be
assured only under the assumption of convexity of the problem. If the constraint set S is

compact and the cost function is continuous on it, existence of a global minimum is
guaranteed. However, in view of the fact that no global optimality conditions are available,
a global solution can be found only by an exhaustive search to satisfy Inequality (5). The
exhaustive search can be organized in such a way that the entire design space need not be
searched for the solution. This way the computational burden is reduced somewhat.

Problem P: Find a design variable vector x to minimize a
cost function

fix) for x E S c R n (1)

where S is the constraint set defined as

S={xlgi(x)=0, i=ltop; gi(x)<0, i=(p+l) tom} (2)

Local Minimum x

fix*) _<f(x) for all x s N(x*,5) _ S (3)

N(x*,5) = {x I IIx-xll < 5} (4)

Global Minimum x*

f(x*) < f(x) for all x s S (5)
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GLOBAL OPTIMIZATION ALGORITHMS

Most global optimization methods developed in the literature are for the
unconstrainedproblems. It is generallyassumedthat theconstraintscanbe handledby
addinga penalty termto thecostfunction. Therefore,unconstrainedalgorithmscanbe
useful. Someof themethodsdateasfar backas1960s.In thefollowing, weoutlinesome
of thealgorithmsthathavebeenpresentedin the literature.

The Tunneling Method

Thetunnelingmethodwasinitially developedfor unconstrainedproblemsandthen
extendedto theconstrainedproblems[1]. Thebasicideaof the methodis to first find a
localminimum x* for thefunctionf(x). Any reliableandefficientmethodcanbeusedin

,
thisstep. Oncethis hasbeendoneanotherstartingpointis foundthat isdifferent from x
buthascostfunctionvalueasf(x*). Thiscanbeexpressedasaproblemof finding root of
thenonlinearequation

f(x) = f(x*) (6)

that is different from x*. Again, any reliable and efficient algorithm for finding roots of
nonlinear equations, such as the stabilized Newton's method can be used. Once the root of
Eq. (6) has been obtained, the method to determine local minimum of f(x) is used to
determine the new solution point. The process is repeated until there is no other root of Eq.

(6) except x = x*. The nonlinear function defined in Eq. (6) or its modification is called

the tunneling function. The phase where root of Eq. (6) is sought is called the tunneling
phase.

f(x)
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Figure Basic Concept of Tunneling Algorithm.
The Algorithm tunnels below irrelevant
minima and approaches the global
minimum in an orderly manner [1].
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GLOBAL OPTIMIZATION ALGORITHMS (Cont'd)

Stochastic Methods

These methods are based on statistical concepts [2,3].

Random Search
Global-Local Phase
Multistart

Region of Attraction
Clustering Method

The Annealing Algorithm

This algorithm, also based on probabilistic concepts, can be used to find global
optimum solution [4].

Can be used for discrete variables

Analogy between Combinatorial Optimization and Annealing Process
Concept of Statistical Mechanical System
H(x): Hamiltonian (total energy)

Boltzmann-Gibbs Distribution:

1
p(x) = Z exp{-H(x)/T}

where T is a temperature and Z is a normalization constant (statistical sum).

Let x* be the equilibrium configuration of the system, i.e.,
min

H(x*) = x_S H(x)

Then the probability of the equilibrium state is maximal, i.e.,

max

p(x*) = xES p(x)

The Genetic Algorithm

This method is also in the category of stochastic search method, such as the
simulated annealing [5,6], in that both methods have their basis in naturalprocesses.

Suitable for Discrete Variable Optimization

Three Operators:
1. Reproduction
2. Crossover
3. Mutation

(7)

(8)

(9)
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ZOOMING ALGORITHM FOR GLOBAL MINIMUM
SOLUTION

This new global minimization algorithm combines a local minimization algorithm
with successive refinements of the feasible region to eliminate regions of local minimum

points to "zoom-in" on the global solution. The basic idea is to initiate the search for a local
minimum from any point - feasible or infeasible point. Once a local minimum point has
been found, the problem is redefined such that the current solution is eliminated from any
further search. The search process is reinitiated and a new minimum point is found. The
process is continued until no other minimum point can be found.

Once a local minimum point has been obtained, the problem is redefined by adding
an additional constraint as follows:

minimize fix)

subject to

gi(x) = 0, i=l top

gi(x) < 0, i = (p+l) to m

fix) _<7 f(x*) (10)

where fix*) is the cost function value at the current minimum

point and 7 is any number between 0 and 1 if fix*) > O, and Y >

1 if fix*) < O. Constraint of Eq. (10) can be written differently as

follows:

f(x) < c (11)

fix) _<fix*) - r If(x*)l (12)

where c < f(x*) and 0 < r < 1.

127



EXAMPLE ILLUSTRATING THE CONCEPT

Minimize fix) = -(x 1- 1.5) 2 - (x 2- 1.5) 2

subject to

Xl+ x 2- 2 < 0

-x 1 < 0, -x 2 < 0

There are three local minimum points:

1. (0,2), f = -2.5

2. (2,0), f = -2.5

3. (0,0), f = -4.5

The figure illustrates the basic concept of zooming algorithm.

I oo
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-o50
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Figure: Graphical Solution for the Example
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Minimize

subject to

NUMERICAL EXAMPLE

f(x) = 9x21 + 18XlX2 + 13x22

2 2

x 1 + x 2 +2x 1 = 16

This problem has two local minimum points:

1. (2.5945,-2.0198), f-- 19.291

2. (-3.7322,3.0879), f-- 41.877

5 O0

400

\

h=O 0

lOO "=19.291

\

F=25000

?=41.877

1,00 2 O0 3.00 4.00 5,(

Figure: Graphical Solution for the Example
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NUMERICAL EXAMPLE

Minimize
3 2

f=2x l+3x 2-x 1-2x 2

subject to

x 1 + 3x 2 _ 6

5x 1 + 2x 2 _ 10

Xl,X 2 _ 0

This problem has four local minimum points:

1. (0,0), f= 0.0

2. (2,0), f=-4.0

3. (0,2), f=-2.0

4. (1.38462,1.53846), f = -0.003654

2 20

I 60

_=0.000 & -0.00365

I O0

0.70

0 40

-0 20

0 10 0.40 0.70 1.00 1 )0

/

Figure: Graphical Solution for the Example
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SIMULTANEOUS CONTROL AND DESIGN OF STRUCTURES

Problem Formulation [7,8]

State Equation: x = Ax + Bf

A=[<O I ]2 _2-_m. '

Performance Index:

tPI = 0 [(x,Qx) + (f, Rf)]dt

State Feedback Control Law:

f = -Gx, G = R-1BTp

ATp T- PBR-1BTp + PA +Q=0

Close-Loop System: x = Ax

w

A=A-BG

Complex Eigenvalues and Damping of Close-Loop System

-. -.2 _i 2 1/2_i = -c_i/(cri + )

131



EXAMPLE: ACOSS-IV Model

Minimize weight, W = _ PiAiLi

subject to

N

031 = 1.341,

For Global Solution:

03j - 03j < 0,

Ai2 - A i < 0,

032 _>1.5,

W<W*

j= 1,2,..

j= 1,2,..

_i = 0.1093, i= 1 tO4

10

4

9 2 8

5 6

7

Figure: ACOSS-IV Model
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RESULTS FOR 12-BAR ACOSS-IV MODEL

Problem No. --> 1 2 3 4 5

Cost Constraint 100.0 28.00 24.00 20.75 19.00

(W*)

Optimum Weight 31.25 28.00 23.29 20.75 No sol.

No. of Iterations 35 26 36 28 35

Starting Point for all problems:

A i = 1000 for i = 1,2,5,6;

AiR=10, i=l to 12

Convergence criteria:

Constraint Feasibility < 0.1%

A i = 100 for others

IISearch Directionll < 0.01
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CONCLUSIONS

• Zooming algorithm for global optimizations appears to be a
good alternative to stochastic methods. More testing is
needed.

. A general, robust, and efficient local minimizer is required.
IDESIGN [9] was used in all numerical calculations which is

based on a sequential quadratic programming algorithm.

, Since feasible set keeps on shrinking, a good algorithm to
find an initial feasible point is required. Such algorithms
need to be developed and evaluated•
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